This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
At Princeton University's new Frick Chemistry Laboratory, dedicated in April, a highly efficient lighting scheme is one of several tightly integrated strategies that contribute to the building's ambitious energy-saving goals: Frick is designed to use 24 percent less site energy than allowed by the 2007 version of ASHRAE 90.1 standard. This building's configuration is a product of both environmental and programmatic goals, according to its architects, London-based Hopkins and Payette Associates of Boston. The 265,000-square-foot structure has two four-story, largely glass-enclosed wings'one on the east for research and another on the west for offices. The pieces are joined by a
A four-story, 239,992-square-foot building for Princeton University's chemistry department, with research and departmental labs and a 256-seat auditorium in the basement, teaching labs and a café on the ground floor, and research labs on the upper three floors.